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Abstract 

The rapid advancements of Artificial Intelligence (AI) technologies, particularly Large 

Language Models (LLMs), have brought and accelerated significant innovations across 

various domains. Regardless of their widespread usefulness, the scalability of LLMs poses 

considerable challenges, primarily due to their substantial demands on computational and 

energy resources. This article explores the importance of developing and applying effective 

compression techniques to mitigate these numerous challenges. Techniques such as 

pruning, quantization, and knowledge distillation are analyzed for their potential to 

decrease a LLM's size and its associated computational demands, while striving to maintain 

performance integrity. Each technique inherently presents unique trade-offs between model 

efficiency and accuracy, requiring a nuanced understanding of their applications. We have 

made an in-depth analysis into the complexities of implementing these techniques, 

highlighting the balance required between performance and compression, along with the 

complex process of customization to specific LLM architectures. The article further 

analyzes the very important validation and testing phases that are much needed for ensuring 

that compressed models perform adequately in real-world applications. We have also 

considered the future adaptability of compression techniques to evolving AI models and 

architectures. The conducted study emphasizes the ongoing need for innovative research in 

model compression in order to make AI technologies more sustainable and accessible across 

various sectors, thereby expanding their potential benefits while addressing the limitations 

and risks associated with their deployment. 
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1. Introduction 

In the contemporary landscape of AI, LLMs have emerged as very important tools, driving 

innovations across a multitude of domains. These models, which include prominent 

examples such as Generative Pre-trained Transformer (GPT) and Bidirectional Encoder 

Representations from Transformers (BERT), leverage vast datasets to understand and 

generate human-like text, offering capabilities that extend into Natural Language 

Processing (NLP), Machine Learning (ML), and beyond. The applications of LLMs are 

numerous, covering various areas such as automated content generation [1–3], real-time 

language translation [4–7], sentiment analysis [8–11], and even aiding in medicines 

discovery [4,12–15], neurosciences [16], geology [17] or in legal document analysis [18–

20]. This wide-ranging applicability emphasizes the models' growing importance in both 

academic research and industry. 

Nevertheless, the scalability of LLMs presents significant challenges. As the size and 

complexity of these models increase, so do their demands for computational and energy 

resources. Training state-of-the-art LLMs often requires extensive hardware setups, 

including multiple high-end Graphics Processing Units (GPUs) or Tensor Processing Units 

(TPUs), which are cost-prohibitive and also raise environmental concerns due to their high 

energy consumption. The intensive computational requirements can limit the accessibility 

of cutting-edge AI technologies, particularly for researchers and organizations with limited 

resources [1,3,13,21,22]. 

Given these constraints, the development and application of efficient compression 

techniques for LLMs assume critical importance. Compression techniques aim to reduce 

the size of neural networks without significantly compromising their performance. 

Techniques such as knowledge distillation, quantization, and pruning are employed to 

create lighter models that retain the efficacy of their larger counterparts while being more 

economical and environmentally sustainable. The implementation of such compression 

techniques is not devoid of challenges. Compressed models often face trade-offs between 

size, speed, and accuracy. While a smaller model size may result in faster computation times 

and lower energy usage, it might also lead to a decrease in the model's ability to generalize 

across tasks or maintain the same level of accuracy as the original model. Conversely, 

maintaining high accuracy can limit the degree of achievable compression. In addition, the 

process of model compression can be complex and requires careful tuning and validation 

to ensure that the reduced model still adheres to the performance standards necessary for 

practical applications. 
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Despite these challenges, the advantages of model compression are significant, offering a 

pathway towards more sustainable and accessible AI technologies. As this field progresses, 

understanding the nuances of various compression techniques and their impact on model 

performance will be essential. This article aims to make an in-depth analysis into these 

aspects, presenting an overview of the current methodologies, challenges, and potential 

future directions in the compression of LLMs. 

 

2. Research methodology 

The research methodology section of this study plays a very important role in establishing 

the analytical approach used to understand compression strategies for LLMs. Given the 

field's rapid growth and the increasing focus on computational efficiency, this study aims 

to identify and analyze relevant scientific literature through a well-defined and systematic 

process. The chosen methodology ensures comprehensive coverage of the relevant 

scientific literature research and addresses important issues concerning compression 

techniques in AI.  

The Clarivate Web of Science (WoS) database has been selected for its extensive indexing 

of high-quality scientific literature across multiple disciplines. WoS provides a curated 

database of peer-reviewed articles, ensuring that the retrieved scientific works maintain the 

highest standards of academic rigor. The usage of the WoS database has enabled us to draw 

from a reliable source that is widely recognized in academic circles for its authority and 

breadth, thereby enhancing the credibility of the research findings. 

Consequently, the selected database has been chosen for this study due to its comprehensive 

and authoritative collection of scientific literature across various disciplines. This choice 

has offered us curated indexing, allowing access to high-quality, reliable information. By 

employing the query "TS=((LLM* OR LARGE LANGUAGE MODEL*) AND (AI OR 

ARTIFICIAL INTELLIGENCE OR MACHINE LEARNING) AND (SIZE COMPRES* 

OR SIZE REDUC*))", we have ensured the retrieval of relevant scientific articles that 

explicitly discuss scientifically compression methods applied to LLMs. 

The rationale for using WoS extends beyond its exhaustive scope to its advanced search 

capabilities. The specific query structure uses truncation and Boolean operators, ensuring 

inclusivity by capturing all forms and variations of keywords related to LLMs and their 

compression, within the context of AI. By employing the TS field (Topic Search), the search 

identifies these terms across article titles, abstracts, and keywords, enhancing the likelihood 

of retrieving relevant research. The inclusion of multiple terms and logical connectors 

ensures that the search is neither too broad nor too narrow, focusing on specific scientific 

discussions around LLM compression. 
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Further filtering the search results to include only scientific research articles, while 

excluding review articles and conference proceedings, has been necessary for ensuring the 

relevance and rigor of the findings. Research articles present primary research, providing 

original data, insights, and methodologies that directly contribute to the understanding and 

advancement of model compression in LLMs. This type of content is foundational, offering 

empirical evidence that other forms of literature may not provide in its final finished form. 

Excluding review articles helps minimize the bias in the selection process, ensuring that the 

analysis relies on new and innovative research contributions.  

Similarly, excluding conference proceedings was required as these papers often represent 

preliminary findings. While conference proceedings are valuable, they may lack the depth 

and methodological transparency of fully developed research articles. This further ensures 

that the collected scientific literature pool for our conducted study consists of in-depth, 

thoroughly vetted studies that meet high academic standards, providing a solid foundation 

for advancing knowledge in this domain. 

 

3. Analysis of trends over time and the main research areas in the scientific literature 

regarding the compressing techniques of LLMs 

The exploration of trends over time in the publication of scientific literature related to the 

compression of LLMs reveals valuable insights into the evolving interests and 

advancements within this important area of AI research.   

By examining the distribution of publications from 2020 throughout to April 20, 2024, we 

can discern shifts in focus, emerging themes, and the overall growth of the field. There has 

been a significant rise in publications from 2020 through 2022, peaking in 2022 with 16 

publications, a slight decrease in 2023 and an early count of 7 publications for 2024 as of 

20-April-2024. This suggests a growing interest and development in the field of model 

compression techniques.  

Starting with 2020, the scientific community began to place an increased emphasis on the 

scalability and efficiency of LLMs [5,23–25]. The year saw a modest number of 

publications, totaling four, which reflects the emerging stage of awareness and 

technological development concerning the compression of these complex models. As LLMs 

like GPT-3 and others began to demonstrate potent capabilities in various domains, ranging 

from NLP to automated content generation, the computational and environmental costs 

associated with these models started to draw significant attention (Figure 1). 
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Figure 1. Exploration of trends over time in the publication of scientific literature related 

to the compression of LLMs4 

In 2021, the publication count slightly increased to six [26–31]. This rise coincides with a 

broader comprehension within the AI research community and industry regarding the 

practical limitations imposed by the massive size and resource demands of state-of-the-art 

LLMs. The year 2021 saw enhancements in compression techniques such as knowledge 

distillation and quantization, tailored to mitigate these limitations. The slight increase in 

publications could be attributed to the consolidation of earlier findings and the initiation of 

more focused research projects aiming to refine and apply these emerging compression 

methods more effectively. 

The year 2022 marked a significant peak with 16 publications, showcasing a robust interest 

and concerted effort in tackling the challenges associated with LLMs [2,4,9–11,15,32–41]. 

This surge can be interpreted as a response to the very important need for more sustainable 

AI practices, as the AI field grapples with the dual challenges of advancing technology and 

reducing its carbon footprint. During this period, research studies likely expanded into 

exploring the efficiency of individual compression techniques and especially their hybrid 

forms, such as integrating pruning with quantization, to achieve even greater reductions in 

model size and computational overhead. 

In 2023, there was a notable decrease in publications to ten [12,13,18,42–48]. This drop 

might reflect a phase where the research community began to fit in the rapid advancements 

 
4 Source: The figure was devised based on the official data retrieved from Clarivate Web of Science in April 

2024. 
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made in the previous years, shifting its focus from pioneering new methods to optimizing 

and validating existing techniques. It is also plausible that as some of the most accessible 

problems were being solved, the challenges became more complex, requiring longer cycles 

of research and development to achieve breakthroughs at the same pace as before. 

Moving towards the partial data available for 2024, with seven publications recorded by 

April 20, the continuing interest in this area is clear, although with a publication rate that 

suggests a stabilization, or a slight decrease compared to the high mark in 2022 

[1,3,21,22,49–51]. This trend could indicate several scenarios like a maturation of the field 

where major innovations become rarer and more incremental or a shift in focus towards 

other emerging areas of AI that require foundational research or simply the cyclical nature 

of research funding and publication outputs. 

Overall, the trajectory of publications from 2020 to 2024 emphasizes a significant and 

growing recognition of the importance of developing effective compression techniques for 

LLMs. This trend is driven by the ongoing need to make AI technologies more accessible 

and sustainable, especially as these models find broader applications across industries and 

sectors. The data also suggests an increasing complexity in tackling the numerous 

challenges of compressing LLMs, reflecting deeper collaborations across computational 

and applied sciences. 

As we look to the future, it is very important for the research community to continue 

promoting innovations in this space, particularly as the deployment environments for AI 

become more diverse and demanding. The adaptability of compression techniques to new 

model architectures and the integration of AI systems into edge devices and mobile 

platforms will likely be key areas of focus. Furthermore, as AI continues to integrate into 

more aspects of everyday life, ensuring the efficiency and sustainability of these systems 

will remain a major concern, driving ongoing research and interest in the field of LLM 

compression. 

In the following, the research areas involved in the development and application of 

compression techniques for LLMs have been analyzed. The Computer Science field 

dominates the research areas with 41 publications, highlighting the central role of this field 

in the development and application of compression techniques for LLMs [2,5–13,18,21,23–

27,29,31–33,36–38,41,42,45–47,49–60]. Engineering follows with 20 publications, 

indicating significant interdisciplinary work involving practical and technical aspects of 

implementing these techniques [1,4,6,10,18,27,30,32,33,35,42,43,47,49,51,52,56,60–62]. 

Physics [1,10,30,31,45,59], Telecommunications [6,27,32,33,47], and Materials Science 

[1,30,48] show fewer contributions, but emphasize the multi-disciplinary approach 

involving fundamental principles, data transmission, and possibly the materials used in 

computational hardware for AI. These findings suggest a robust and interdisciplinary effort 

in refining AI model efficiency, with a strong concentration in Computer Science. The 

trends reflect the academic and practical importance of this research area, along with 
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potential shifts in focus or emerging subfields within the broader AI research community 

(Figure 2). 

 

Figure 2. Research areas involved in the development and application of compression 

techniques for LLMs 5 

In order to obtain a comprehensive analysis of the correlation between different research 

areas involved in the development and application of compression techniques for LLMs, it 

is important to study the complex interactions and interdisciplinary efforts that characterize 

this field. This detailed exploration will highlight the predominant trends, collaborations 

across disciplines and highlight potential gaps along with opportunities for future research. 

The rapid advancement of AI, particularly in the domain of LLMs such as GPT [1] and 

BERT [10,46,50], has required the exploration and implementation of various compression 

techniques to make these models more accessible and sustainable. The central challenge 

consists of reducing the computational and energy demands of these models without 

significantly compromising their performance. The interdisciplinary nature of this 

challenge has brought together experts from Computer Science, Engineering, Physics, 

Telecommunications, and Materials Science, each contributing unique perspectives and 

methodologies. 

Computer Science is of extreme importance for research in AI model compression. It 

provides the theoretical frameworks, algorithms, and software implementations necessary 

 
5 Source: The figure was devised based on the official data retrieved from Clarivate Web of Science in April 

2024. 
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for developing effective compression techniques such as pruning, quantization, and 

knowledge distillation. The field's dominance in the literature, accounting for over 68% of 

the publications, is indicative of its central role. Researchers in Computer Science work on 

algorithmic modifications and optimizations that can significantly reduce the size and 

computational complexity of LLMs. Pruning techniques are developed to remove 

redundant weights from neural networks, and quantization methods are applied to reduce 

the precision of the numerical values used in models, thereby decreasing the memory 

requirements and accelerating computation. 

Engineering, with a substantial 33% of the publications, primarily focuses on the practical 

application and implementation of these compression techniques. Engineering research 

often bridges the gap between theoretical Computer Science models and real-world 

applications, addressing challenges related to hardware design, software-hardware 

integration, and the scalability of AI systems. Engineers work on adapting compression 

techniques to be compatible with existing and emerging hardware platforms, ensuring that 

compressed models are theoretically effective and practically viable. Engineering research 

might explore structured pruning techniques that are more amenable to conventional 

hardware architectures, therefore enhancing the efficiency of matrix operations that are 

extremely important for deploying models on general-purpose GPUs and on other 

accelerators. 

Physics and Telecommunications contribute to a lesser extent, representing 10% and 8.33% 

of the publications, respectively. Nevertheless, their contributions are very important for 

understanding and improving the physical and network constraints associated with 

deploying AI models. Physics research might focus on the thermodynamic and quantum 

properties of materials used in hardware that supports AI computations, potentially leading 

to innovations in energy-efficient computing architectures. Meanwhile, 

Telecommunications research addresses the data transmission aspects, necessary for 

deploying AI models in distributed systems and for real-time applications such as 

automated content generation and real-time language translation. 

Materials Science, though only accounting for 5% of the publications, plays a very 

important role in the development of new materials that can enhance the performance and 

efficiency of computational hardware. Research in this area might explore novel 

semiconductor materials or advanced manufacturing techniques that can be used to build 

more efficient GPUs and TPUs, which are needed for training and running large-scale AI 

models. 

The correlation between these research areas can be seen in the collaborative efforts that 

aim to address the complex challenges posed by LLMs. The integration of Computer 

Science and Engineering is evident in the development of hardware-aware algorithms 

where compression techniques are tailored to the specific capabilities and limitations of the 

hardware used to run the models. Similarly, the collaboration between Materials Science 
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and Physics can lead to breakthroughs in hardware technology, such as the development of 

energy-efficient neural network processors that could further enhance the viability of 

compressed models. These interdisciplinary interactions promote innovation, ensure that 

the solutions developed are robust and applicable in a variety of settings. Advancements in 

Telecommunications research can enhance the deployment capabilities of AI models by 

improving the efficiency of data transfer across networks, which is very important for 

applications like cloud-based AI services and mobile AI applications [63]. 

Despite the robust collaborative efforts, there are gaps and challenges that need to be 

addressed to further advance the field of AI model compression. One of the significant 

challenges is the potential loss of accuracy and model generalizability due to compression. 

While compression techniques aim to minimize the impact on performance, there is often 

a trade-off between model size and its ability to perform complex tasks. Future research 

studies need to focus on developing compression techniques that can maintain high 

accuracy while achieving substantial reductions in model size and computational 

requirements. 

Another area for potential improvement is the adaptability of compression techniques to 

new AI architectures and algorithms. As AI continues to evolve, with new models and 

approaches being developed at a rapid pace, compression techniques also need to be 

adaptable to these changes. This requires ongoing research and development to ensure that 

the techniques are effective for current models and also for future AI systems. The 

complexity of implementing these compression techniques also poses a significant 

challenge. Effective compression requires a deep understanding of both the architecture of 

the model and of the underlying algorithms. Customizing compression strategies to fit a 

specific model without losing essential functionalities demands extensive experimentation, 

complex engineering, and iterative tuning. This process is further complicated by the need 

for rigorous validation and testing to ensure that the compressed models perform adequately 

in real-world applications. Validation involves extensive testing against diverse datasets to 

identify any potential degradation in performance that may have been introduced during the 

compression process. This is extremely important for maintaining the trust and reliability 

of AI technologies in sensitive applications such as healthcare, finance, and autonomous 

driving. 

Furthermore, the integration of emerging technologies such as federated learning and edge 

computing with model compression techniques could open new avenues for deploying AI 

in decentralized and privacy-preserving manners. These technologies allow for AI models 

to be trained and operated directly on user devices, reducing the need for data transmission 

and central processing, thereby enhancing user privacy and system efficiency. Conversely, 

this integration presents unique challenges, including the need for models that are 

compressed, robust enough to handle variable data environments and the computational 

capabilities of edge devices. 
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The field also faces ethical considerations, particularly in terms of bias and fairness. 

Compressed models, by necessity, simplify the representations learned by larger models, 

which could lead to the amplification of biases present in the training data. Ensuring that 

compression techniques do not exacerbate these biases requires careful attention to the 

design of both the model and the training process. This includes implementing strategies 

for bias detection and mitigation during both the training and compression phases. 

Interdisciplinary collaboration will be of utmost importance for overcoming these 

challenges. As illustrated by the current distribution of research efforts, no single field can 

address all aspects of model compression alone. Collaborative projects that bring together 

experts from Computer Science, Engineering, Physics, Materials Science, and 

Telecommunications can leverage the strengths of each discipline to develop more 

comprehensive and effective solutions. Combining the theoretical insights from Computer 

Science with practical implementations from Engineering and cutting-edge materials from 

Physics can lead to the development of next-generation AI systems that are both powerful 

and efficient. 

Future research studies should also focus on creating standardized frameworks and tools 

for implementing and evaluating model compression techniques. Such frameworks would 

help unify the efforts across different research areas and facilitate the sharing of best 

practices and benchmarks. This could accelerate the development of new compression 

methods and their adoption in industry and academia.  

The compression of LLMs is a dynamic field that covers multiple disciplines, each 

contributing valuable and very important insights and technologies to address the 

challenges associated with these advanced AI systems. The ongoing collaboration and 

integration of diverse research areas are essential for advancing the state of the art in AI 

model compression. By continuing to encourage these interdisciplinary efforts and by 

addressing the technical, practical, and ethical challenges head-on, the research community 

can ensure that AI technologies become more sustainable, efficient, and accessible. This 

will expand the potential applications of AI and will also ensure that it is deployed in a 

manner that is beneficial and equitable for all sectors of society. The continual evolution of 

AI demands a proactive approach to research and development in model compression, 

making it an exciting and critical area of study in the expanding field of AI. 

 

4. Challenges associated with the successful application of compression techniques to 

LLMs 

In the following, we make an in-depth analysis into the main challenges associated with the 

successful application of compression techniques to LLMs. This analysis provides an 

overview of the complexities and main obstacles that researchers and practitioners face 
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when striving to reduce the computational and resource demands of these complex AI 

systems without compromising their performance.  

One of the foremost challenges in compressing LLMs is maintaining a delicate balance 

between the model's size, speed, and accuracy. Compression techniques such as pruning, 

quantization, and knowledge distillation aim to reduce the physical size of the neural 

networks and the resources they require. Nevertheless, each method introduces potential 

trade-offs [24,42,49]. 

 

4.1. Pruning compression technique 

Pruning is a compression technique applied to LLMs aimed at reducing the model's size 

and computational demands by eliminating redundant or non-critical parameters. It 

involves eliminating weights or neurons that contribute least to the model outputs, but it 

can also inadvertently remove elements that are necessary for certain tasks, leading to a loss 

in model generalizability or performance on specific benchmarks.  

This technique is very important for making neural networks more efficient, especially in 

scenarios where computational resources are constrained, or costs need to be minimized. 

The concept of pruning stems from the observation that not all weights in a neural network 

contribute equally to its performance, suggesting that some can be removed with minimal 

impact on the model's efficacy. 

Pruning can be broadly categorized into two types: structured and unstructured. 

Unstructured pruning involves the removal of individual weights across the network's 

matrices, leading to sparse connectivity between neurons. This type of pruning is highly 

flexible and can result in significant model size reduction. Nonetheless, it requires 

specialized software and hardware that can efficiently handle sparse matrices to realize 

computational speedups [64–66]. 

Structured pruning, on the other hand, removes entire rows, columns, or filters from 

matrices, leading to a reduced complexity in the network’s architecture. This form of 

pruning is more amenable to conventional hardware as it maintains the dense matrix 

structures necessary for optimized GPU utilization. 

The implementation of pruning typically follows a three-step process: 

I. Training: The neural network is first fully trained to learn the complex patterns in the 

data. 

II. Removal (actual pruning): After training, weights that contribute the least to the output 

(often those with the smallest magnitudes) are identified and removed. This process can be 

iterative, involving re-training the network several times to refine which weights are 

pruned. 
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III. Fine-tuning: Once pruning is complete, the network undergoes additional training or 

fine-tuning with the remaining weights to recover any loss in performance due to the 

pruning process. 

Various algorithms and criteria can be used to determine which weights to prune, such as 

magnitude-based pruning, where weights below a certain threshold are removed, and 

gradient-based pruning, which considers the sensitivity of the output to changes in each 

weight. One of the most evident benefits of pruning is the reduction in model size. By 

removing non-essential weights, the model becomes lighter, which saves storage space and 

also reduces the bandwidth needed for deploying the model in distributed systems or on 

edge devices.  

Pruned models often require fewer computational resources. This is particularly beneficial 

in resource-limited environments where reducing the number of operations per inference 

can lead to faster response times and a lower power consumption. Structured pruning aligns 

well with existing hardware architectures, potentially increasing the efficiency of matrix 

operations. This can be particularly advantageous when deploying models on general-

purpose GPUs or other accelerators that benefit from dense matrix operations. 

The primary drawback of pruning is the potential reduction in model accuracy. Pruning 

important weights, even if they appear insignificant, can impair the model’s ability to 

generalize from the training data to real-world applications. This requires a careful balance 

between the degree of pruning and the maintenance of model performance. Determining 

the optimal strategy for pruning is not a trivial aspect. It requires extensive experimentation 

with different pruning levels, methods, and fine-tuning cycles, which can be time-

consuming and computationally expensive. Moreover, the criteria for pruning must be 

carefully chosen to avoid removing weights critical for certain tasks. The effectiveness of 

pruning is highly dependent on the quality of the initial model training. Poorly trained 

models might retain redundant weights while also lacking sufficient diversity in the weights 

that contribute to critical decision-making processes within the model. 

Pruning presents a viable method for compressing LLMs by reducing unnecessary 

complexities and enhancing computational efficiency. While it offers considerable 

advantages in terms of model size and operational speed, it also poses challenges, including 

potential losses in accuracy and the complexity of its implementation. As the field of AI 

continues to evolve, further research and development are necessary to refine pruning 

techniques, ensuring they can reduce resource demands without significantly compromising 

the performance and adaptability of LLMs. This ongoing advancement will be extremely 

important in making AI technologies more accessible and sustainable, catering to a broader 

range of applications and environments. 

 

4.2. Quantization compression technique 
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Quantization is a very important compression technique applied to LLMs to reduce the 

computational resources required for their operation while attempting to maintain 

acceptable levels of accuracy and performance. While this significantly decreases the size 

and increases the processing speed, it can lead to quantization errors, where the 

approximation of values causes a drop in accuracy. Quantization, in the context of ML and 

specifically in LLMs, refers to the process of reducing the precision of the numerical values 

used in a model. Traditionally, neural networks use floating-point arithmetic to perform 

calculations. These calculations, while accurate, are computationally expensive and 

resource intensive. Quantization addresses this aspect by approximating these floating-

point numbers into lower-bit representations, typically using integer formats. 

The basic principle behind quantization is the mapping of a continuous set of values (like 

those represented in floating-point) into a discrete set of values (like integers). This 

mapping reduces the memory requirements and speeds up the computation as integer 

operations are generally faster and more power-efficient on modern computing hardware 

than floating-point operations. Quantization can be broadly categorized [21,67,68] into 

three types: 

I. Post-Training Quantization: This technique is applied after a model has been fully trained. 

The weights and activations, which are originally in floating-point, are converted into a 

lower-bit format. The main advantage of post-training quantization is its simplicity and ease 

of implementation as it does not require retraining the model. 

II. Quantization-Aware Training (QAT): This method integrates quantization into the 

training process itself. By simulating the effects of quantization during training, QAT helps 

the model adjust its parameters to minimize the loss in accuracy that typically occurs when 

quantization is applied post-training. 

III. Dynamic Quantization: This technique primarily quantizes the activations based on 

their distribution in real-time as they vary from one input to another. It is typically applied 

at the inference stage and is particularly useful for models where activation ranges can vary 

significantly. 

Quantization incorporates various methodologies for mapping and representing values in a 

compact form. In uniform quantization, the range between the smallest and largest values 

is divided evenly, making this method straightforward and well-suited for hardware 

implementation due to its simplicity. Conversely, non-uniform quantization employs 

techniques such as logarithmic scaling, where the intervals between quantized values vary, 

enhancing fidelity particularly in regions near zero, where precision is often most important. 

Additionally, scalar and vector quantization approaches treat data differently, namely scalar 

quantization is processing each value independently, while vector quantization handles 

groups of values collectively, based on their overall distribution. 
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The application of quantization to LLMs brings significant advantages, primarily reducing 

the model's size through the use of fewer bits to represent each weight and activation, 

therefore diminishing the storage requirements. This compression also enables faster 

inference speeds as computations with lower-bit values are quicker on specialized 

hardware, a key aspect for applications demanding real-time processing. Furthermore, the 

reduced computational complexity leads to lower energy consumption, which is very 

important for models deployed on energy-constrained devices such as mobile phones and 

embedded systems. 

One must take into account that quantization is not without its challenges. The reduction in 

bit precision can result in accuracy loss, particularly in complex tasks where high precision 

is essential. Moreover, some quantization techniques may depend on specific hardware 

capabilities to achieve computational benefits, limiting their usefulness in environments 

lacking such support. Implementing quantization also adds complexity, even if post-training 

quantization is relatively straightforward, quantization-aware training (QAT) necessitates 

adjustments to the training protocol, potentially introducing additional overhead in tuning 

and validation. Additionally, the effectiveness of quantization can vary significantly with 

different model architectures, requiring careful evaluation to understand its impact on each 

unique case. 

Quantization presents a viable method for compressing LLMs, offering significant benefits 

in terms of reduced model size, increased processing speed, and enhanced energy 

efficiency. Nevertheless, the trade-offs in terms of potential accuracy loss and the 

complexities involved in its implementation must be carefully managed. Future research is 

needed to develop more advanced quantization techniques that can minimize accuracy loss 

while maximizing computational efficiency. This ongoing development is necessary for the 

broader adoption and application of LLMs in resource-constrained environments, 

contributing to the advancement of accessible and sustainable AI technologies. In the 

context of achieving LLM compression by means of quantization, it is important to 

highlight the extremely important balance between efficiency gains and potential pitfalls. 

As the field of AI continues to evolve, quantization will play an essential role in enabling 

the deployment of advanced neural networks in diverse and challenging real-world 

applications. 

 

4.3. Knowledge Distillation compression technique 

Knowledge distillation (KD) is a model compression technique that has gained significant 

attention in the field of AI, specifically in the context of LLMs. This technique involves 

transferring knowledge from a larger, often more cumbersome model (referred to as the 

"teacher") to a smaller, more efficient model (referred to as the "student"). The predominant 

goal of KD is to enable the student model to perform at par with the teacher model while 

requiring less computational power and memory, thereby making the deployment of AI 
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technologies more feasible in resource-constrained environments. The challenge consists 

in ensuring that the student model captures the nuanced understanding of the teacher model 

without needing the same computational resources. These techniques, while effective in 

reducing the size and computational load, must be applied judiciously to avoid undermining 

the model's ability to perform its intended tasks accurately. 

KD operates on the premise that a complex model, which has been extensively trained and 

has a deep understanding of the data, can impart this knowledge to a simpler model. The 

process involves two main stages: the training of the teacher model and the distillation 

phase where the student learns from the teacher. The teacher model is typically a fully 

trained, high-capacity model that achieves high performance on the tasks for which it is 

designed. This model’s depth and complexity allow it to capture subtle patterns in large 

datasets, making it an effective but resource-intensive solution. 

During distillation, the student model is trained to predict the hard target labels of the 

training data and also to mimic the output distributions (soft targets) provided by the teacher 

model [69]. Soft targets are the probabilities or logits produced by the teacher for each class, 

which carry more information per example than hard labels. An example of this aspect is 

given by the fact that while a hard label might indicate the correct translation of a sentence, 

the soft targets could reveal how closely other potential translations compare, according to 

the teacher’s understanding. The distillation loss, typically a form of cross-entropy between 

the soft targets of the teacher and the outputs of the student, guides the student training. 

This loss is often combined with the traditional hard target loss, balancing learning from 

the teacher and adhering to the ground truth [70]. 

A common method to enhance the effectiveness of KD is temperature scaling. This involves 

modifying the "softmax" function used during training by introducing a temperature 

parameter that controls the smoothness of the output probability distribution [71]. A higher 

temperature results in a softer probability distribution over classes, which provides more 

informative gradients for the student model during training. Beyond basic temperature 

scaling, custom strategies may involve adjusting the layers of the student that receive 

guidance from the teacher or altering the representation forms that the student should learn 

[69]. Some approaches focus on distilling intermediate representations (features) instead of 

just output probabilities [20]. 

One of the primary advantages of KD is the reduction in the size and computational 

requirements of the student model. This allows the deployment of complex AI models on 

devices with limited hardware capabilities, such as mobile phones and embedded devices. 

Despite its smaller size, a well-distilled student model can achieve performance close to 

that of the teacher model, making this technique particularly valuable for applications where 

performance cannot be compromised. By learning from the soft probabilities, student 

models often generalize better to new data compared to training from scratch or from hard 
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labels alone. This is because the soft labels encode additional information about the 

relationships between different classes [72]. 

The success of the student model heavily relies on the quality of the teacher model. A poorly 

trained teacher model can mislead the student, resulting in worse performance than a model 

trained directly from the data. The process of KD can be complex, involving careful tuning 

of the temperature parameter and of the distillation loss. Finding the right balance between 

learning from soft and hard targets requires extensive experimentation. Although the 

student model is lighter, the overall training time including the teacher’s training can be 

substantial. Additionally, the resources required for training the teacher model are 

significant [73]. 

KD is particularly useful in scenarios where deploying large models is not feasible. It has 

been successfully applied in NLP tasks like machine translation [4–6], sentiment analysis 

[8,10], and question-answering [3] systems. Future research in KD is likely to focus on 

improving the efficiency of the distillation process, developing more robust student models 

that can outperform their teacher models, and extending the applicability of this technique 

to newer and more complex model architectures.  

KD stands out as a promising technique for model compression. Its ability to transfer deep 

knowledge from large, resource-intensive models to more manageable counterparts without 

significant loss in performance is a major advantage. As AI technologies continue to evolve, 

optimizing and refining KD will be of extreme importance for advancing the practical 

deployment of AI systems, particularly in environments where resources are constrained. 

The broader implications of KD extend beyond just model size and computational 

efficiency. By enabling powerful models to be compressed into more manageable forms, 

KD opens up new possibilities for AI applications in areas that were previously considered 

impractical due to hardware limitations. This includes real-time applications on mobile 

devices, such as live language translation and advanced on-device AI assistance, which can 

now benefit from deep learning insights without connectivity or high-power consumption. 

In addition, the democratization of access to advanced AI technologies through techniques 

like KD can help bridge the gap between well-funded, large-scale research institutions and 

smaller organizations or startups. This could offer equal opportunities and promote 

innovation across various sectors by making cutting-edge AI tools more accessible and less 

expensive to deploy. 

One must also carefully take into consideration the challenges and limitations of KD. The 

reliance on a high-quality teacher model means that any inherent biases or errors in the 

teacher model are likely to be transferred to the student model. This could perpetuate or 

even amplify undesirable characteristics unless carefully managed. Additionally, the 

complexity of the distillation process itself may pose barriers to its widespread adoption, as 

it requires significant expertise and resources to implement effectively. Technical 
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challenges include the need for careful calibration of the distillation parameters, such as the 

temperature of the "softmax" function and the balance between different components of the 

loss function [73]. These parameters can significantly influence the effectiveness of the 

distillation and require detailed empirical evaluation to optimize. 

Future studies might explore automated methods for optimizing these parameters or 

developing more adaptive distillation techniques that can dynamically adjust based on the 

student model's performance. Additionally, extending the concept of distillation beyond the 

teacher-student framework to include multiple teachers or collaborative distillation 

processes could offer new ways to enhance model performance and efficiency. As AI 

continues to advance, the role of KD is likely to grow, particularly in the development of 

AI models that are both powerful and practical for everyday applications.  

The exploration of hybrid models that combine KD with other compression techniques such 

as pruning and quantization could yield even more efficient and robust AI systems. 

Furthermore, integrating KD into the lifecycle of AI development, from training through 

deployment, could help in continuously refining models in a resource-efficient manner. The 

integration of KD with emerging technologies like federated learning, where models are 

trained across multiple decentralized devices while keeping all the training data local, could 

further enhance privacy and scalability. This represents a significant step forward in 

creating AI systems that are both powerful and privacy-preserving. 

KD is a powerful tool for model compression that offers significant benefits, including 

reduced model size, retained performance, and enhanced generalization. Nonetheless, its 

successful implementation requires careful consideration of various technical and ethical 

factors. Continued research and development in this area are essential to fully attain its 

potential and address the ongoing challenges. As the field progresses, KD will play an 

increasingly important role in making advanced AI technologies more accessible and 

sustainable, contributing significantly to the advancement of both the science and 

application of AI. 

 

4.4. Complexity of implementation and trade-offs in model usefulness 

The process of implementing compression techniques is inherently complex. It requires a 

deep understanding of both the architecture of the model and the underlying algorithms. 

Each LLM has unique characteristics based on its training data, structure, and intended use 

cases. Customizing compression strategies to fit a specific model without losing essential 

functionalities demands extensive experimentation, complex engineering, and iterative 

tuning. 

The appropriate level of pruning or the best quantization scheme can vary widely between 

models. Developers must conduct numerous trials to identify the most effective parameters, 
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which can be a time-consuming and resource-intensive process. Additionally, each iteration 

must be rigorously tested to ensure that the compressed model still meets the performance 

criteria necessary for its application. 

Compressed models often face significant trade-offs in their usefulness. A smaller model 

size generally leads to faster computation times and lower energy usage, which are 

beneficial for deploying models on edge devices or in environments where computing 

resources are limited. Nevertheless, these advantages may come at the cost of reduced 

accuracy or a diminished ability to generalize across different tasks and datasets. A model 

compressed for efficient translation might struggle with the subtleties of the language that 

are extremely important for tasks like sentiment analysis or legal document interpretation. 

Ensuring that a model remains versatile across various applications while being compressed 

is a significant challenge. 

The endeavor to compress LLMs involves an array of complex procedures that require an 

in-depth comprehension of model architectures and underlying algorithms while also 

demanding careful customization to harmonize with the model's intrinsic characteristics 

without undermining its core functionalities. This complexity emerges from the inherent 

diversity and characteristics of LLMs, which are shaped by their training data, structural 

configurations, and the specific applications for which they are intended. As such, the 

implementation of compression techniques is a complex challenge that requires precise 

engineering, extensive experimentation, and iterative refinement to ensure that the integrity 

and effectiveness of the model are preserved. 

The first step in the compression of a LLM is a thorough understanding of its architecture. 

LLMs, such as GPT and BERT, are built on complex neural network architectures that 

involve multiple layers of processing units, each responsible for understanding different 

aspects of the input data. These models employ mechanisms like attention and transformer 

architectures, which allow them to handle vast amounts of data and capture complex 

patterns in language.  

Understanding these mechanisms is necessary for effective compression because each 

component of the architecture plays a specific role in the model's learning and inference 

processes. The attention mechanism in transformers facilitates the model's ability to focus 

on relevant parts of the input data, enhancing its understanding and generation of language. 

Compressing such a model without a detailed understanding of these components could 

lead to significant losses in functionality and performance, as critical aspects of the model’s 

capability to process and generate language might be inadvertently diminished. 

Given the unique characteristics of each LLM, developing a one-size-fits-all compression 

approach is impractical. Instead, compression strategies must be tailored to fit specific 

models. This customization involves modifying existing compression techniques, such as 
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pruning, quantization, and KD, to align with the model's architecture and the requirements 

of its application domain. 

The choice between structured and unstructured pruning depends on the specific model and 

the computational resources available. Structured pruning, which involves removing entire 

neurons or layers, may be suitable for models where computational efficiency is a priority 

and can be aligned with hardware that benefits from dense matrix operations. Conversely, 

unstructured pruning, which targets individual weights for removal, might be preferred 

when minimal impact on model performance is most important, and the available hardware 

can efficiently handle sparse matrices. 

The process of implementing compression techniques is inherently iterative. It often 

requires multiple cycles of compression, testing, and tuning to find the optimal balance 

between model size, speed, and accuracy. Each iteration involves applying a compression 

technique, evaluating the model's performance on a set of benchmarks, and adjusting the 

parameters of the compression technique based on the outcomes.  

This iterative process is very important because it allows for the gradual refinement of the 

compression strategy, minimizing the risk of degrading the model's performance. An 

example of this aspect is given by the fact that during the pruning process, an initial round 

of weight removal might show minimal impact on performance. Subsequent rounds might 

gradually increase the amount of pruning, with continuous monitoring to ensure that the 

performance does not fall below acceptable thresholds. 

Implementing compression techniques requires advanced engineering skills and effective 

management of computational resources. Engineers must be adept at both software 

development and ML, with a deep understanding of how changes to the model’s 

architecture and parameters affect its behavior. This dual expertise is necessary to modify 

the model efficiently and to implement the compression techniques without introducing 

bugs or errors that could lead to unexpected behavior.  

Additionally, managing computational resources effectively is extremely important, 

especially in environments where these resources are limited. Compression techniques can 

reduce the computational load of LLMs, making it feasible to deploy them on lower-end 

hardware or in resource-constrained environments. Nevertheless, achieving these 

reductions without excessive expenditure on computational resources during the 

compression process itself requires careful planning and management. 

Despite the progress in model compression techniques, numerous challenges remain. The 

complexity of implementation is not merely a technical barrier but also a strategic one, 

involving decisions about which aspects of a model are essential for its intended use and 

how those aspects can be preserved during compression. Future studies in this area are 

likely to focus on developing more automated and adaptive compression techniques that 

can dynamically adjust to the model's performance during the compression process. 
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Advances in ML, such as reinforcement learning and meta-learning, could potentially be 

harnessed to automate the selection and tuning of compression parameters, reducing the 

need for manual intervention and making the process more efficient. 

In addition, as AI and ML continue to evolve, the adaptability of compression techniques 

to new model architectures and training paradigms will be determinant factors. This 

includes the ability to compress models that use emerging techniques such as few-shot 

learning, unsupervised learning, or transfer learning, in situations where traditional 

compression approaches may not be directly applicable. The compression of LLMs 

represents a significant technical endeavor that holds the potential to transform the 

scalability and applicability of AI technologies, particularly in environments constrained by 

computational resources or hardware capabilities. The intricacies involved in achieving 

effective compression without compromising the functional integrity of these models 

require a disciplined approach to understanding, customizing, and iteratively refining the 

technologies used. 

 

4.5. Validation and testing 

An important part of implementing compression techniques consists in the validation phase, 

where the performance of the compressed model is rigorously assessed against benchmarks 

that are representative of real-world tasks. This validation is more than a one-time event, is 

a continuous process that ensures the model remains robust and performs well under 

different conditions and datasets. In order to attain an effective validation, diverse datasets 

that cover possible scenarios that the model may encounter in practical applications are 

used. This extensive testing helps identify any potential degradation in performance or in 

functionality that might have been introduced during the compression process. Additionally, 

it provides insights into how the model performs on various tasks, which is very important 

for understanding the trade-offs made during compression . 

Researchers must consider that as new types of neural network architectures are developed, 

they may introduce different characteristics or sensitivities that need to be considered in the 

compression process. Architectures that use mechanisms beyond attention, such as those 

incorporating dynamic neural networks or capsule networks, often require novel 

approaches to compression that can accommodate their unique properties [74–77]. The 

complexity of compressing LLMs also necessitates collaboration across various disciplines 

within both academia and industry. This multidisciplinary approach brings together 

expertise from areas such as ML, software engineering, hardware design, and application 

development. Such collaborations can accelerate the refinement of compression techniques 

and help bridge the gap between theoretical research and practical application. 

Collaborative efforts can also facilitate the sharing of best practices, tools, and resources, 

making it easier for smaller organizations or individuals to adopt and benefit from 
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compressed models. By democratizing access to advanced AI technologies, the broader AI 

community can drive innovation and application across a wider array of sectors. As 

compression techniques become more advanced and widely implemented, it is necessary to 

consider the ethical and social implications of deploying compressed models. These 

considerations include the transparency of model behaviors, the fairness of their outputs, 

and their accessibility to various user groups. Addressing these issues requires careful 

design of the compression process to ensure that it does not inadvertently introduce biases 

or reduce the model's ability to handle diverse data inputs fairly. It also involves developing 

guidelines and standards for the responsible use of compressed models, particularly in 

sensitive areas such as healthcare, law enforcement, and financial services. 

The compression of LLMs is a complex, dynamic, and critically important area of research 

within AI. The successful implementation of compression techniques requires a deep 

understanding of the underlying technologies, a commitment to rigorous testing and 

validation, and a proactive approach to adapting these methods to new developments in the 

field. As these techniques continue to evolve, they promise to make AI more accessible and 

sustainable, thereby expanding the potential for these technologies to benefit society. The 

ongoing research, collaboration, and ethical consideration will be of extreme importance 

for obtaining these benefits while mitigating the risks associated with AI deployment in 

diverse environments. 

 

5. Conclusions 

The field of AI and ML is rapidly evolving, with new models and techniques being 

developed continuously. Ensuring that compression techniques remain effective as models 

evolve is a significant challenge. Compressed models must be robust, effective with current 

technologies and also adaptable to future developments. Researchers and developers must 

anticipate changes in hardware capabilities, data availability, and model architectures. This 

requires a forward-thinking approach to compression, where techniques are designed to 

optimize current models and adapt to next-generation AI technologies. 

The compression of LLMs presents a complex array of challenges that cover technical, 

practical, and strategic dimensions. Balancing performance trade-offs, managing complex 

implementation processes, ensuring robust validation, and future-proofing technologies are 

all critical to the success of these initiatives. As the field progresses, developing more 

advanced, efficient, and adaptable compression techniques will be essential for making AI 

technologies more sustainable and accessible to a broader range of users and applications. 

This ongoing effort will require an intensive collaboration between researchers, engineers, 

and industry stakeholders in order to overcome these challenges and harness the full 

potential of compressed LLMs. 
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